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Preface

Over the past decades there has been a notable progress in the Science and Technol-
ogy of Nanomaterials. The distinct and novel properties of nanostructured materials
along with their size scale comparable to biological structures raised the interest of
the pharmaceutical and biomedical industries in the field of Nanotechnology. As a
result, a number of approaches has been developed aiming to produce high quality
nanoparticles for several bio-applications. These efforts raise many issues related to
the design of materials with specific functionalities and question how these materials
interact with biological systems.

Although research on nanoparticles is evolving rapidly, nanocomposite particles
have been less investigated particularly when biointerfaces are also considered in
these studies. Analogous to single-phase nanoparticles, and besides chemical com-
position, size effects and surface structure are of great relevance in determining
the properties of nanocomposite particles. However, because at least two distinct
chemical components are present in such hybrid particles, there is the possibility of
achieving new functionalities when compared to the individual components. More-
over, new effects can emerge due to specific physico-chemical interactions between
the materials that compose the nanocomposites. This is a key feature with great
consequences in many applications that to be fully developed need bridges between
scientific domains that are frequently apart.

The main scope of this book is to introduce the reader to important aspects on
the materials chemistry of nanocomposite particles and underpinning properties of
relevance for various bio-applications. It is our aim to provide an overall picture
of this field to readers, eventually having quite distinct scientific backgrounds, by
covering the recent developments in nanocomposites particles. In this context, we
have deliberately favored the presentation of topics of general interest to understand
the properties of the materials in detriment of very specialized topics eventually
circumscribed by a purist terminology.

While planning this book a number of relevant topics in nanocomposite science
came to our discussions. We decided to maintain open slots covering the main as-
pects on nanocomposite particles for bio-applications and then to invite specialists
to contribute for each envisaged topic. Chapter 1 is an introductory chapter to

xxi



xxii Preface

general aspects on nanoparticles and their use as nano-fillers in nanocomposites.
On the other hand, Chapters 2 and 3 are mainly concerned with the science of
polymers normally used in nanocomposites, namely their chemical functionaliza-
tion and their use in a biological context, such as in pharmaceutical and medical
applications. In Chapters 4 and 5 there is a special focus on bionanocomposites
and biointerfaces, bridging aspects presented previously in Chapters 1-3 to those
that are dealt with in the subsequent chapters. Chapters 6-9 details synthetic
routes towards diverse nanocomposite particles and also relevant properties aiming
bio-applications. Finally, Chapters 10 to 12 offer examples of bio-applications that
make use of nanocomposites and address a number of scientific challenges for their
use in a biological context, including their health and environmental impact.

Nanotoxicological concerns are especially acute when considering bio-
applications and in particular those with interest to Nanomedicine, because in this
case all efforts are primarily directed to the well-being of the patient. These aspects
are briefly mentioned in some of the chapters of this book. Nevertheless, nanotoxi-
cology and nanosafety regulations are issues evolving rapidly to a specialized body
of knowledge for scientists and regulatory agencies. Scientific literature concern-
ing specifically nanotoxicology issues has been published and will be valuable for
readers of this book.

The concept of this book was in a large extent inspired by a multi-disciplinary
team involved in a project aiming to develop nanocomposite particles with potential
for in witro clinical diagnostic techniques (Project PTDC/QUI/67712/2006 funded
by Fundagao para a Ciéncia e Tecnologia/FEDER). To our colleagues and post-
graduate students involved in this project we thank their long date collaboration.

We are pleased to have edited this book and we are very grateful to the authors
of the chapters, for their essential contributions. This book would not be possible
without their expertise and enthusiasm.

It is our hope that this book contributes not only for the state of the art on
nanocomposite particles but also to convey a stronger impetus to research in this
fascinating field. Nevertheless, we prefer to let the reader be the final judge of this
contribution. Nanocomposite particles are small-scale materials promising a number
of benefits but also a number of big challenges requiring a multi-disciplinary ap-
proach to tackle scientific issues and the engagement of diverse audiences. Somehow,
this reminds us the inspired words of the poet Fernando Pessoa: “All is worthwhile
if the soul is not small”.

Aveiro, 2010 Tito Trindade
Ana Luisa Daniel da Silva



