edited by Tito Trindade | Ana L Daniel da Silva

Nanocomposite Particles for Bio-Applications

Materials and Bio-Interfaces

Nanocomposite Particles for **Bio-Applications**

Materials and Bio-Interfaces

edited by Tito Trindade | Ana L Daniel da Silva

Nanocomposite Particles for Bio-Applications Materials and Bio-Interfaces

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

NANOCOMPOSITE PARTICLES FOR BIO-APPLICATIONS

Copyright © 2011 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4267-78-6 (Hardcover) ISBN 978-981-4267-81-6 (eBook)

Printed in the USA

Contents

Lis	t of Fi	gures		xi		
Lis	List of Tables xiz					
Pre	eface			xxi		
1. From Nanoparticles to Nanocomposites: A Brief Overview			articles to Nanocomposites: A Brief Overview	1		
	1.1	Nanosc	eience and Nanotechnology: An introduction	1		
	1.2	Nanopa	articles' Diversity	3		
		1.2.1	Quantum dots	4		
		1.2.2	Iron oxides	4		
		1.2.3	Metal nanoparticles	5		
	1.3	Surface	Modification of Nanoparticles	7		
		1.3.1	Ligand exchange reactions	8		
		1.3.2	Inorganic nanocoating	8		
		1.3.3	Encapsulation in polymers	10		
	1.4	Designi	ing Biointerfaces over Nanoparticles	11		
	1.5	Challer	nges for the FutureNanosafety for Today	14		
2.	Polyn	ners for	Biomedical Applications: Chemical Modification			
	and	Biofun	ctionalization	21		
	2.1	Drug D	Delivery Systems	21		
	2.2	Hydrog	gels	23		
		2.2.1	Application of hydrogels	24		
		2.2.2	Types of hydrogels	25		
	2.3	Bioadh	esives	30		
	2.4	Surface	Modification	34		
		2.4.1	Surface modification by ultra-violet radiation	36		
		2.4.2	Plasma treatment	37		
			2.4.2.1 Plasma generation	37		

			2.4.2.2	Plasma polymerization and surface modification of polymers			
	2.5	Conclu	ıding Ren	narks			
3.	Nanc of 1	ocapsule: Bioactiv	s as Carrie e Molecul	ers for the Transport and Targeted Delivery es			
	3.1	Introd	uction				
	3.2	Polym	eric Nano	capsules: Production and Characterization			
		3.2.1	Nanoca	osules made of synthetic polymers			
			3.2.1.1	Polyacrylate nanocapsules			
			3.2.1.2	Polyester nanocapsules			
		3.2.2	Nanoca	osules made of natural polymers			
		3.2.3	Lipid na	anocapsules			
	3.3	Thera	peutical A	Applications of Nanocapsules			
		3.3.1	Nanoca	psules for oral drug delivery			
			3.3.1.1	Nanocapsules for oral peptide delivery			
			3.3.1.2	Nanocapsules for oral delivery of lipophilic low			
				molecular weight drugs			
		3.3.2	Nanoca	osules as nasal drug carriers			
		3.3.3	Nanoca	psules as ocular drug carriers			
		3.3.4	Nanoca	osules in cancer therapy			
		3.3.5	Nanoca	psules as carriers for gene therapy			
	3.4	Conclu	usions				
4.	Inorg	Inorganic Nanoparticles Biofunctionalization					
	4.1	Biocor	iugation	of Nanoparticles			
	4.2	Nanop	articles a	nd Their Surface Properties			
		4.2.1	Surface	capping of nanoparticles			
		4.2.2	Semicor	ductor quantum dots and metallic nanoparticles .			
		4.2.3	Silica na	anoparticles and silica encapsulation			
	4.3	Attach	ment Sch	emes			
		4.3.1	Covalen	t attachment			
		4.3.2	Non-cov	alent attachment			
		4.3.3	Affinity	binding			
	4.4	Specifi	c Cases .	· · · · · · · · · · · · · · · · · · ·			
		4.4.1	Proteins	3			
		4.4.2	DNA .				
		4.4.3	Avidin				
		4.4.4	Phospho	blipid encapsulation and functionalization			
	4.5	Applic	ations	-			
		4.5.1	Cellular	imaging			
		4.5.2	Drug de	livery			

		4.5.3	Biolumin	escence resonance energy transfer	86
		4.5.4	Hyperthe	ermia	87
	4.6	Conclu	sion		88
5.	Silica	-Based I	Materials:	Bioprocesses and Nanocomposites	97
	5.1	Natura	l Silica Na	anocomposites	97
		5.1.1	Introduct	tion	97
		5.1.2	Diatom b	piosilica	98
		5.1.3	Sponge b	piosilica	99
		5.1.4	(Bio)-tec	hnological applications of biosilica	100
	5.2	Biomin	netic Silica	a Nanocomposites	102
		5.2.1	Introduct	tion	102
		5.2.2	Silica nai	no composites based on natural templates \ldots .	102
		5.2.3	Silica nai	no composites based on model templates	103
			5.2.3.1	Synthetic peptides	103
			5.2.3.2	Synthetic polyamines	103
			5.2.3.3	Biological templates	105
		5.2.4	Biomime	tism: How far can we go? \ldots \ldots \ldots	106
	5.3	Bio-Ins	spired Silic	a Nanocomposites	107
		5.3.1	Introduct	tion	107
		5.3.2	Biotechn	ological and medical applications	107
		5.3.3	Perspecti	ves	109
6.	Synth	netic Str	ategies for	Polymer-Based Nanocomposite Particles	115
	6.1	Introdu	iction		115
	6.2	Surface	es and Inte	erfaces: Chemical Modification of Nanoparticles .	117
	6.3	$In \ situ$	Synthetic	Strategies for Polymer-Based Colloidal Nanocom-	
		posites			120
		6.3.1	In situ p	reparation of the fillers	121
			6.3.1.1	Sol-gel methods	121
		6.3.2	<i>In situ</i> p	olymerization of the matrix	123
			6.3.2.1	Organic solvent-based methods: Dispersion poly-	
				merization	124
			6.3.2.2	Water-based methods: Emulsion and miniemul-	
				sion polymerization	125
		6.3.3	Controlle	ed polymerization: Surface initiated polymeriza-	
			tion (SIP	·) · · · · · · · · · · · · · · · · · ·	128
			6.3.3.1	Atom Transfer Radical Polymerization—ATRP .	128
			6.3.3.2	Reversible Addition Fragmentation chain transfer	180
				(RAFT) polymerization	130
			6.3.3.3	Combined controlled polymerization mechanisms	132

	6.4	Functi	onalization	of Polymer-Based Nanocomposites for Bio-	129
	6.5	Final 1	Remarks .		$132 \\ 134$
7.	Syntl	nesis of	Nanocompo	osite Particles Using Supercritical Fluids:	
	Al	Bridge v	vith Bio-ap	plications	145
	7.1	Introd	uction		145
	7.2	Superc	critical Flui	ds: Definition and Current use in Bio-Applications	146
		7.2.1	Definition	1	146
		7.2.2	SCFs in b	piomedical applications	148
			7.2.2.1	Development of drug delivery systems	148
			7.2.2.2	${\rm scCO}_2$ for purification and sterilization	150
	7.3	Can S	CFs be Use	ed to Introduce Inorganic NPs into Polymers?	150
		7.3.1	Formation	n of hybrid organic-inorganic NPs in SCFs	
			(route 1)		152
		7.3.2	Encapsul	ation of inorganic NPs into a polymer shell	
			(route 2)		153
		7.3.3	Polymer	swelling and in situ growth of inorganic NPs	
			(route 3)		154
			7.3.3.1	Polymer swelling by $scCO_2$	155
			7.3.3.2	Chemical transformation of impregnated metal	
				precursor	155
	7.4	Conclu	usions		157
8.	Bioco	omposite	es Containi	ng Magnetic Nanoparticles	165
	8.1	Introd	uction		165
	8.2 Magnetic Properties				167
		8.2.1	Magnetis	m at nanoscale level: Concepts and main phenom-	
			ena		167
			8.2.1.1	Basic concepts	167
			8.2.1.2	Systems with interactions between magnetic	
				centers	168
			8.2.1.3	Superparamagnetism	169
		8.2.2	Magnetis	m concepts subjacent to bio-applicatons	172
			8.2.2.1	Magnetic separation and drug delivery	172
			8.2.2.2	Magnetic resonance imaging (MRI)	172
			8.2.2.3	Magnetic hyperthermia	173
	8.3	Magne	etic Nanopa	rticles for Bio-Applications	175
		8.3.1	Iron oxid	$e \text{ nanoparticles } \dots $	175
		8.3.2	Metallic 1	nanoparticles	176
		8.3.3	Metal all	by nanoparticles	177
		8.3.4	Bimagnet	ic nanoparticles	177

	8.4	Strateg	gies of Synthesis of Magnetic Biocomposite Nanoparticles	178
		8.4.1	In situ formation of magnetic nanoparticles	179
			8.4.1.1 Iron oxide nanoparticles	180
			8.4.1.2 Other magnetic nanoparticles	183
		8.4.2	Encapsulation of magnetic nanoparticles within	
			biopolymers	185
	8.5	Conclu	sions and Future Outlook	186
9.	Multi	ifunctior	al Nanocomposite Particles for Biomedical Applications	193
	9.1	Introdu	uction	193
	9.2	Types	of Multifunctional Magnetic-Fluorescent Nanocomposites	194
	9.3	Main A	Approaches to the Preparation of Multifunctional Magnetic-	
		Fluores	scent Nanocomposites	195
		9.3.1	Silica coated magnetic-fluorescent nanoparticles	196
		9.3.2	Organic polymer coated magnetic cores treated with fluo-	
			rescent entities	198
		9.3.3	Ionic assemblies of magnetic cores and fluorescent entities .	199
		9.3.4	Fluorescently-labeled lipid coated magnetic nanoparticles .	200
		9.3.5	Magnetic core directly linked to fluorescent entity via a	
			molecular spacer	201
		9.3.6	Magnetic cores coated by fluorescent semiconducting shells	201
		9.3.7	Magnetically-doped QDs	202
		9.3.8	Magnetic nanoparticles and QDs embedded within a poly-	
			mer or silica matrix \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	203
	9.4	Biome	dical Applications	204
		9.4.1	Bio-imaging probes	204
		9.4.2	Cell tracking, sorting and bioseparation	206
		9.4.3	Applications in nanomedicine	208
	9.5	Conclu	sions and Future Outlook	210
10.	Bio-	Applica	tions of Functionalized Magnetic Nanoparticles and	
	Th	eir Nanc	ocomposites	217
	10.1	Introdu	uction	217
	10.2	Fundai	ments of Nanomagnetism	220
		10.2.1	Single-domain particles	220
		10.2.2	Magnetic anisotropy energy	220
		10.2.3	Superparamagnetism	221
	10.3	Fundai	ments of Colloidal Stability	223
	10.4	Bio-Ap	pplications of Magnetic Nanoparticles	224
		10.4.1	Magnetic separation	224
		10.4.2	Drug delivery	225
		10.4.3	Nuclear magnetic resonance imaging (MRI)	227

			10.4.3.1 Contrast agents based on superparamagnetic	
			nanomagnets	228
		10.4.4	Magnetobiosensors	231
			10.4.4.1 Magnetobiosensors based on magnetorelaxometry	232
			10.4.4.2 Magnetobiosensors based on magnetoresistance $% 10.4.4.2$.	233
			10.4.4.3 Magnetosensors based on Hall effect	234
			10.4.4.4 Magnetoplasmonics	234
		10.4.5	Magnetic hyperthermia	235
	10.5	Summa	ary and Outlook	238
11.	Anti	i-Microb	ial Polymer Nanocomposites	249
	11.1	Introdu	action	249
		11.1.1	Packaging	250
		11.1.2	Textiles	250
		11.1.3	Coatings	252
			11.1.3.1 Antimicrobial coatings	252
			11.1.3.2 Medicine, pathology and surgical implants/	
			biomedical coatings	253
	11.2	Anti-M	ficrobial Polymer-Based Nanocomposites	253
	11.3	Mechai	nisms of Antibacterial Action	256
		11.3.1	Detection of microbes $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	256
		11.3.2	Control of microbial growth	257
	11.4	Enviro	nmental and Health Concerns	260
12.	Bios	ensing A	Applications Using Nanoparticles	265
	12.1	Biosens	sors: A Definition	265
	12.2	Uses of	Gold Nanoparticles	266
		12.2.1	Tailoring biointerfaces over gold nanoparticles	267
		12.2.2	Biosensing applications of gold nanoparticles	268
			12.2.2.1 Crosslinking-based biosensing	269
			12.2.2.2 Non-crosslinking-based biosensing	272
	12.3	Semico	nductor Quantum Dots	273
		12.3.1	Properties of quantum dots	273
		12.3.2	Biosensing with quantum dots	273
			12.3.2.1 Immunosensing \ldots \ldots \ldots \ldots \ldots \ldots	274
			12.3.2.2 DNA assays	274
			12.3.2.3 Resonance energy transfer-based assays \ldots .	275
	12.4	Outloo	k Remarks	277
Ind	ex			283

List of Figures

1.1	Photograph of a polished ammonite and SEM image of a crystalline sediment in the fossil (bar = 5 µm)	3
1.2	SEM image of a fiber of a cellulosic nanocomposite (photograph on left bottom) containing silica-coated gold nanoparticles (TEM image on top	0
	right) (color Fig. C2).	6
1.3	Scheme of different nanoparticles surface modification methods	7
1.4	Schematic representation of an energy diagram of a CdSe/ZnS core-shell	
	nanostructure.	9
1.5	TEM of a core-shell particle composed of lanthanopolyoxometalates	
	trapped in amorphous SiO_2	10
1.6	TEM images of poly(styrene)-based nanocomposite particles containing	
	nano-fillers (dark areas) of EuS (left), ZnO:Er (center) and Au (right).	12
1.7	Examples of biomedical applications of nanocomposite particles	13
2.1	Crosslinking reaction between gelatine and chitosan with epoxides	22
2.2	Crosslinking reaction between gelatine or chitosan with genipin	22
2.3	Scanning electron micrographs: (a) Toluene diisocyanate/polycapro-	
	lactone diol microparticles and (b) poly(3-hydroxybutyrate-co-3-	
	hydroxyvalerate) microparticles	23
2.4	Effect in drug concentration using different administration methods	24
2.5	Chemical structures of alginate, chitosan and hyaluronic acid	27
2.6	Chemical structures of inulin and dextran	28
2.7	Transterification reaction catalyzed by Proleather enzyme	29
2.8	Cyanoacrylates degradation in aqueous medium resulting in formal de-	
	hyde formation	31
2.9	Formation of a urethane linkage.	32
2.10	Reaction between a pre-polymer and the amino groups of a protein re-	
	sulting in a urea linkage	32
2.11	Schematic representation of the chemical reactions involved in the PCL	
	modified with 2-isocyanatoethylmethacrylate (IEMA) membrane syn-	
	thesis (UV irradiation in the presence of Irgacure ^(B) 2959)	34

2.12	Scheme of a surface chemical grafting of a TPU using different chemicals and by previous functionalization with hexamethylene dijsocyanate (HDI)	36
9 13	Scheme of surface grafting of a TPU with hydrovyethyl methacrylate	50
2.10	(HEMA) using gamma irradiation.	36
2.14	Scheme of surface grafting of a TPU with hydroxyethyl methacrylate	
	(HEMA) using UV irradiation and with isopropylthioxanthone (ITX).	37
2.15	Schematic representation of a plasma chamber	38
2.16	Schematic representation of plasma treatment effects.	39
3.1	Schematic diagram of nanocapsules containing an aqueous or oily core.	46
3.2	Preparation of nanocapsules by interfacial polymerization	48
3.3	Preparation of nanocapsules by interfacial polymer deposition following	
	solvent displacement	49
3.4	Preparation of nanocapsules by polymer adsorption following solvent	
	displacement.	50
3.5	Preparation of nanocapsules by phase inversion temperature	51
3.6	Serum calcium levels in rats after oral administration of salmon cal-	
	citonin in an aqueous solution (sCT Sol) or encapsulated in chitosan	
	nanocapsules (CS NC) at two different doses (250 and 500 IU/Kg),	
	$(\text{mean} \pm \text{SE}; n = 6). \dots \dots$	53
3.7	Serum calcium levels in rats after nasal administration of salmon calci-	
	tonin (sCT, dose: 15 IU/kg) in aqueous solution (with or without CS) or	
	encapsulated in the control nanoemulsion (NE) or in chitosan nanocap-	
	sules (CS NC); (mean \pm SE; $n = 6$). *Significantly different from salmon	
	calcitonin solutions ($p < 0.05$). #Significantly different from nanoemul-	
n 0	Sion $(p < 0.05)$	99
3.8	Permeation of indomethacin through isolated rabbit cornea: (Δ) PCL parametricles (\Box) PCL parametricles (\Box) and (\bullet)	
	nanoparticles, (\bigcirc) FCL handcapsules, (\Box) subinicion emuision, and (\bullet)	57
3.0	In vive affects of paglitaval loaded linid paperapsulos (INC) treatment	51
5.9	on the growth of F08 glioma calls implanted (C control: Px INC)	
	paclitaxel-loaded LNC: Py Taxol only: $Py + PEC-HS$ Taxol with	
	Solutol HS15 solution)	59
3.10	Inhibition of Erwing sarcoma fusion oncogen (EWSFli1)-expressing tu-	00
0.10	more growth in nude mice by: \bigcirc , siRNA-antisense (siRNA-AS) loaded	
	NC: \triangle , siRNA-control loaded NC: \Box , siRNA-AS naked: \diamond , siRNA-	
	control naked; •, saline	60
4.1	Encapsulation of QD cores in silica ($F =$ functional group)	73
4.2	Self-assembly of gold nanoparticle arrays using oligonucleotides	79
4.3	A nanoplasmonic ruler for measuring nuclease activity and DNA finger-	
	printing	80
4.4	Encapsulation of QDs in phospholipid micelles and conjugation with	
	DNA by sulfo-SMCC.	81

4.5	A summary of the bioconjugation schemes. (A) Chemisorption of an
	electronegative group to positive ions on the nanoparticle surface, a thi-
	olate linkage in this case. (B) A heterobifunctional crosslinker. (C) Con-
	jugation by electrostatic attraction. (D) DNA intercalation. (E) Conju-
	gation by affinity binding, antibody-antigen in this case. (F) Conjuga-
	tion via a functionalized phospholipid
4.6	(a) CdSe/ZnS QDs fluorescing from blue to red, with a diameter range
	of 2–10 nm. (b) A pseudocolor image of a human epithelial cell labeled
	with QDs. (Color Fig. C3)
4.7	Synthesis of QDs which self-illuminate by bioluminescence resonance en-
	ergy transfer
5.1	Detail of the surface of the <i>Thalassiosira sp.</i> frustule
5.2	SEM image of a giant spicule
5.3	Conversion of a diatom frustule from (a) silica to (b) MgO, followed by
	(c) BaTiO ₃ deposition. (d) shows corresponding XRD patterns 101
5.4	Different silica morphologies obtained in the presence of the R5 peptide
	$(scale \ bar = 1 \mu m). \ \ldots \ $
5.5	Different silica morphologies obtained in the presence of poly-L-lysine
	(a-c, scale bar = $1\mu m$), together with selected electron diffraction pattern.104
5.6	Silica microparticles formed by gelatin thin films templating 106
5.7	Silica deposition on the surface of gelatine micro-beads
5.8	Endocytosis and intracellular degradation of hybrid silica/biopolymer
	nanoparticles
6.1	Nature example of a nanocomposite material: (a) shell with nacre sur-
	face; (b) mesolayers separated by organic layers embedded with $CaCO_3$;
	(c) aragonite stacked platelets arranged in a 'brick and mortar' structure
	"glued" by a polymeric organic matrix. (Color Fig. C1) 116
6.2	Synthetic strategies to prepare polymer-based nanocomposite particles. 117
6.3	Examples of modified inorganic surfaces: <i>procedure</i> 1—adsorption of or-
	ganic molecules; <i>procedure</i> 2—grafting of organic molecules through co-
	valent bonds carrying: (a) reactive end groups; (b) polymerizable groups
	and (c) polymerization mediators
6.4	Inorganic particles formed through sol-gel reactions in the presence of
	pre-formed polymers. The final hanocomposite can exhibit weak (a, b)
	The inorganic phase may consist in individual particles (a and a) or
	structured networks (b and d)
65	TEM images of SiO_2 /nolv(styrene) nanocomposites obtained with silice
0.0	particles with (a) 72 and (b) 352 nm
66	Scheme of the in situ emulsion polymerization in the presence of incr
0.0	ganic nanoparticles
	O

6.7	Schematic representation of the consecutive stages for the fabrication of
	the "Janus" nanoparticles
6.8	Scheme of the in situ miniemulsion polymerization in the presence of
	inorganic nanoparticles
6.9	Examples of ATRP initiators used in SIP ATRP from the surface
	of silica surfaces: (a) 2-(4-chloromethylphenyl)ethyl dimethylethoxysi-
	lane, (b) 3-(2-bromoisobutyryl)propyl di-methylethoxysilane and (c) 3-
	(2-bromopropionyloxy)propyl dimethylethoxysilane
6.10	Examples of RAFT chain transfer agents used in RAFT SIP from in-
	organic surfaces: (a) 3-(2-Dithiobenzoatepropionyl)propyl) dimethyl-
	methoxysilane; (b) 4-cyanopentanoic acid dithiobenzoate and (c) 2-
	{[(butylsulfanyl)carbonothioyl]sulfanyl propanoic acid}
6.11	Scheme for the different models of organization of the polymer chains
	grafted on inorganic nanoparticles: (a) compact-Au nucleus with poly-
	meric chains (shell) completely folded; (b) extended-Au nucleus and
	polymeric chains (shell) completely extended radially, with all the chains
0.10	in trans configuration and (c) height profile of a monolayer on a substrate. 131
6.12	Biofunctionalization of ferromagnetic latexes with bovine IG antibodies. 133
6.13	Targeting epidermal growth factor receptors (EGFR) with QDs. EGFR
	labeled with biotinylated epidermal growth factors (EGF), are stained
P 1	with aminoQD covalently conjugated to streptavidin
7.1	Phase diagram of a single substance in the p,T space (S, Solid, L, Liquid,
	G, Gas, p, pressure, 1, temperature, p_c , critical pressure and I_c , critical temperature)
7.0	Main newton to marked based NDs a shorten source sites using SCEs 111
(.Z 7.2	Main routes towards metal-based NPs-polymer composites using SCFS. 151
1.3	new and versatile concept to form morganic-organic hybrid NPS — Ex-
74	Example of Fd IVFS functionalized with heptadecalitoro-1-decalietinoi 155
1.4	productor of morganic NFS inside polymer particles. M-L is the metal
Q 1	Magnetethermal responsive drug delivery using magnetic hydrogal com
0.1	posite papoparticles: (a) papocomposite particles containing magnetic
	nanoparticles and dispersed drug: (b) swelling/collapse of network gels
	caused by heat generated by exposing magnetic nanoparticles to an al-
	ternate external magnetic field: (c) drug release from network gel 166
8.2	Effective (circles), Brown (solid lines) and Néel (dotted lines) relaxation
0.2	times as a function of the nanoparticles diameter for two sets of K_{eff}
	and η values: $4 \times 10^4 \text{ J/m}^37 \times 10^{-4} \text{ Pa.s}$ (typical values of magnetite in
	water) and 4×10^5 J/m ³ 0.33 Pa.s (typical values of cobalt in glycerol).
	Other parameters are $T = 300$ K and $\tau_0 = 10^{-10}$ s
8.3	NMRD profile $(R_1 \text{ as a function of } \omega_0)$ of magnetite nanoparticles in col-
	loidal solution and fit to the outersphere model accounting for anisotropy.
	Insets show the relation between curve features and fit parameters 173

8.4	(a) Transmission electron microscopy (TEM) image of $FePt/Fe_3O_4$ core/shell nanoparticles; TEM (b) and HRTEM (c) images of $FePt/Fe_3O_4$ heterodimeric nanoparticles.	178
8.5	Schematic representation of the hydrogel network of polysaccharides formed in the presence of cations: (a) G units "egg box" conformation	
	in alginate and (b) $\kappa\text{-carrageenan}$ helical conformation	180
8.6	Average size of magnetite nanoparticles synthesized in the presence of	
	κ -, ι - and λ - carrageenan, evaluated by XRD measurements	181
8.7	TEM image of magnetic nanogels prepared in the presence of κ -	
	carrageenan. The inner darker core indicates the presence of magnetic	101
0.0	nanoparticles	181
8.8	Scheme of the carbodilmide mediated reaction used for coupling the	
	antibody to the surface of the magnetic carboxylated carrageenan	
	at the surface of the nanospheres to produce the reactive intermediate	
	O-acylisourea which will react with amine groups in the antibody, giving	
	an amide linkage	182
8.9	TEM micrographs of Ni and Co nanoparticles prepared in the presence	
	of alginate with low and high M/G ratio. (scale bar = 100 nm)	184
8.10	Schematic illustration of the LbL process to form polyelectrolyte mul-	
	tilayers on nanoparticles. Nanoparticles are consecutively coated using	
	solutions of polyelectrolytes oppositely charged (1 and 2)	185
9.1	Schematic presentation of various types of magnetic-fluorescent	
	nanocomposites.	195
9.2	Schematic presentation of general synthetic approach to fluorescently	
	labeled silica coated magnetic nanocomposites. (i) Initial optional coat-	
	ing with sodium silicate; (ii) base catalyzed condensation of TEOS on	
	nanoparticle surface; (iii) covalent attachment of carboxyl fluorophore to	
	of silene modified fluorenhore onto silice coated magnetic particle	107
0.2	I ever by layer treatment of magnetic pareneticles with positively	191
9.0	charged polyallylamine hydrochloride (PAH) and negatively charged	
	poly sodium(styrene sulfonate) polyelectrolytes (PE).	199
9.4	Direct covalent linkage of magnetite nanoparticles to dopamine function-	
	alized porphyrin.	202
9.5	Schematic presentation of the synthesis of FePt-CdS fluorescent mag-	
	netic nanocomposites.	202
9.6	Osteoblast cells uptake of particles. Population imaging (a) confocal	
	image and (b) overlay with phase contrast (mag. $\times 40$, Scale bar =	
	$50 \mu m).$ Single cell imaging. (c) confocal image and (d) with combined	
	phase contrast (mag. $\times 60,$ Scale bar = 50 μm). (Color Fig. C4)	205

9.7	Gross views of a rat brain labeled with TAT-conjugated QDs; (a) and (b) represent dorsal views and (c) represents coronal section. Pink color (left side in (a,c) and right side in (b)) originates primarily from QD fluorescence and background blue color (right side in (a,c) and left side in(b)) is due to the combination of UV excitation, autofluorescence, and scattering lights. (Color Fig. C5)	207
9.8	Leukocytes aligned between ferromagnetic lines. Whole blood was incu- bated with CD45-labeled ferromagnetic nanoparticles and acridine or- ange. (Color Fig. C6)	208
10.1	Comparison of the sizes of atoms, nanoparticles, and biological entities.	218
10.2	(A) Electron micrographs representing parts of the cytoplasm of HeLa cells after 1 h incubation at 37°C with magnetic nanoparticles ([Fe] = 10 mM) followed by 1 h chase. The nanoparticles (black points) are confined within endosomes, dispersed throughout the cell cytoplasm. (B) Electron micrographs of HeLa cells after 1 h incubation at 37°C with magnetic nanoparticles ([Fe] = 10 mM) followed by 1 h chase (including 30 min under a homogeneous magnetic field B = 100 mT). Chains of magnetic endosomes are observed along the magnetic field direction. (C) Living HeLa cell light transmission images. Chains of magnetic endosomes (pointed out with solid arrows) are oriented along the x direction for the cell of the balance o	010
10.9	of the magnetic field created by two pairs of Helmholtz coils.	219
10.3	A simple schematic representation of the superparamagnetic effect in absence of interparticle interactions. In absence of field all the moments points to the easy directions (single-domains are randomly oriented and the sum of magnetic moments is zero). After applying a high mag- netic field all the moments orient parallel to that field and the magnetic moment reaches the highest value. After switching off the field two sce-	

narios can be produced. In the scenario shown in the upper right part the thermal energy (k_BT) is not sufficient to overcome the anisotropy energy barrier (KV) and magnetic memory is developed. The magnetic moment sum equals to the so-called remanence magnetization (experimentally we observe the typical hysteresis loop associated with data recording). In the scenario shown in the lower right part the thermal energy (k_BT) overcomes the anisotropy energy barrier (KV) and as a result no magnetic memory is developed (superparamagnetic effect). The magnetic moment sum equals to zero as in the initial state (experimentally we observe reversibility, that is, no hysteresis). Important, these two scenarios are timely-dependent so using different techniques such as a vibrating sample magnetometer or Mössbauer spectroscopy (different measurements times) can lead to different results. In fact, any system is thermally relaxed to its initial conditions if it is left sufficient time without perturbation.

xvi

10.4	Release of 1-methyl-4-[2-(4-oxocyclohexadienylidene)ethylidene)]-1,4-	
	dihydropyridine (p-MOED) from loaded Fe ₃ O ₄ @PCL hybrid particles	
	in DMSO by magnetic heating	226
10.5	Spin-echo abdomen magnetic resonance images of a living rat. Images in	
	the first row were acquired before injection of the magnetic nanoparticles,	
	and those from the second to the fourth row were captured at different	
	times	231
10.6	Schematic illustration of the synthesis and structure of the multifunc-	
	tional magnetic gold nanocomposite (MGNC) for cancer detection via	
	MRI and synchronous dual therapy.	232
10.7	Schematic of a scanning micro-Hall probe microscope including the	
	electronic scheme of the experiment. Inset shows the scheme of	
	the scribed Hall cross. The size of the Hall bar is in the range of 1–	
	$5 \mu\mathrm{m}$.	235
10.8	The DNA-BCA assay. (A) Nanoparticle and magnetic microparticle con-	
	taining nanomagnets probe preparation. (B) Nanoparticle-based PCR-	
	less DNA amplification scheme.	236
11.1	Bacterial growth can be interfered in many ways. A schematic repre-	
	sentation depicting the multiple modes of action of metal nanoparticles.	
	A single type of particle can act on many components of bacterial cell	250
11.0	growth.	258
11.2	Images showing the inhibition zones for samples of <i>E. coli</i> : (a) control,	
	(b) with antibiotics, and (c) with synthesized Ag-PEG-PU-TiO ₂ films.	
	I ne images illustrate that the nanocomposite samples are more effective	
	In creating a sharp zone of minibition compared to the antibiotics. (Color E_{in} (C7)	250
19.1	Fig. 07)	209
12.1	(a) Colloidal solution of probe functionalized Au NPs and its typical on	
	tical absorption spectrum. (b) The biorecognition induced aggregation	
	of the functionalized Au NPs by means of interaction with the target	
	analyte results in a plasmon peak shift towards higher wavelength as	
	well as in broadening of the spectrum (solid line), which can be detected	
	with the naked eve by a color change from red-to-blue of the colloidal	
	solution.	268

12.2	Au NPs aggregation through interparticle crosslinking (left panel). (a)	
	AuNPs are brought close together by target molecules having multiple	
	binding sites for the receptors previously immobilized at the nanoparti-	
	cles surfaces; (b) removal of crosslinking molecules promoting nanopar-	
	ticle redispersion; (c) target modification of crosslinking molecules to	
	avoid nanoparticle aggregation; and (d) target modification of the recep-	
	tors to indirectly control aggregation and redispersion. AuNPs aggre-	
	gation induced by direct recognition (right panel) of receptor-modified	
	nanoparticles and complementary-modified nanoparticles: (e) Disrup-	
	tion of interparticle interaction to promote redispersion; (f) aggregation	
	can be regulated by biological processes that modify surface-attached	
	receptors	270
12.3	Schematics of the strategy for the simultaneous detection of four different	
	toxins. First, antibodies against all four toxins were adsorbed on a solid	
	surface. Second, the immobilized antibodies were exposed to a mix of	
	all four toxins. Third, toxins were detected by anti-toxin antibodies	
	conjugated to the various QDs	274
12.4	Schematics of the RET-based maltose-sensor with quantum dots as en-	
	ergy donors	276
12.5	Conformational diagram of a molecular beacon in the presence and in	
	the absence of the complementary target.	276

List of Tables

2.1	Monomers used in the synthesis of hydrogels	26
2.2	Methods of surface modification techniques used in biomaterials	35
3.1	Polymers used as wall materials in nanocapsules for the delivery of dif-	
	ferent therapeutics, using varied administration routes	47
7.1	Critical coordinates of CO_2 and H_2O	147
8.1	Examples of natural polymers used in the preparation of hydrogels	166
8.2	Examples of magnetic nanocomposite hydrogels	178
11.1	Examples of nanocomposites exhibiting specific antimicrobial activity. $% \mathcal{A} = \mathcal{A}$.	255

Preface

Over the past decades there has been a notable progress in the Science and Technology of Nanomaterials. The distinct and novel properties of nanostructured materials along with their size scale comparable to biological structures raised the interest of the pharmaceutical and biomedical industries in the field of Nanotechnology. As a result, a number of approaches has been developed aiming to produce high quality nanoparticles for several bio-applications. These efforts raise many issues related to the design of materials with specific functionalities and question how these materials interact with biological systems.

Although research on nanoparticles is evolving rapidly, nanocomposite particles have been less investigated particularly when biointerfaces are also considered in these studies. Analogous to single-phase nanoparticles, and besides chemical composition, size effects and surface structure are of great relevance in determining the properties of nanocomposite particles. However, because at least two distinct chemical components are present in such hybrid particles, there is the possibility of achieving new functionalities when compared to the individual components. Moreover, new effects can emerge due to specific physico-chemical interactions between the materials that compose the nanocomposites. This is a key feature with great consequences in many applications that to be fully developed need bridges between scientific domains that are frequently apart.

The main scope of this book is to introduce the reader to important aspects on the materials chemistry of nanocomposite particles and underpinning properties of relevance for various bio-applications. It is our aim to provide an overall picture of this field to readers, eventually having quite distinct scientific backgrounds, by covering the recent developments in nanocomposites particles. In this context, we have deliberately favored the presentation of topics of general interest to understand the properties of the materials in detriment of very specialized topics eventually circumscribed by a purist terminology.

While planning this book a number of relevant topics in nanocomposite science came to our discussions. We decided to maintain open slots covering the main aspects on nanocomposite particles for bio-applications and then to invite specialists to contribute for each envisaged topic. Chapter 1 is an introductory chapter to general aspects on nanoparticles and their use as nano-fillers in nanocomposites. On the other hand, Chapters 2 and 3 are mainly concerned with the science of polymers normally used in nanocomposites, namely their chemical functionalization and their use in a biological context, such as in pharmaceutical and medical applications. In Chapters 4 and 5 there is a special focus on bionanocomposites and biointerfaces, bridging aspects presented previously in Chapters 1–3 to those that are dealt with in the subsequent chapters. Chapters 6–9 details synthetic routes towards diverse nanocomposite particles and also relevant properties aiming bio-applications. Finally, Chapters 10 to 12 offer examples of bio-applications that make use of nanocomposites and address a number of scientific challenges for their use in a biological context, including their health and environmental impact.

Nanotoxicological concerns are especially acute when considering bioapplications and in particular those with interest to Nanomedicine, because in this case all efforts are primarily directed to the well-being of the patient. These aspects are briefly mentioned in some of the chapters of this book. Nevertheless, nanotoxicology and nanosafety regulations are issues evolving rapidly to a specialized body of knowledge for scientists and regulatory agencies. Scientific literature concerning specifically nanotoxicology issues has been published and will be valuable for readers of this book.

The concept of this book was in a large extent inspired by a multi-disciplinary team involved in a project aiming to develop nanocomposite particles with potential for *in vitro* clinical diagnostic techniques (Project PTDC/QUI/67712/2006 funded by Fundação para a Ciência e Tecnologia/FEDER). To our colleagues and post-graduate students involved in this project we thank their long date collaboration.

We are pleased to have edited this book and we are very grateful to the authors of the chapters, for their essential contributions. This book would not be possible without their expertise and enthusiasm.

It is our hope that this book contributes not only for the state of the art on nanocomposite particles but also to convey a stronger impetus to research in this fascinating field. Nevertheless, we prefer to let the reader be the final judge of this contribution. Nanocomposite particles are small-scale materials promising a number of benefits but also a number of big challenges requiring a multi-disciplinary approach to tackle scientific issues and the engagement of diverse audiences. Somehow, this reminds us the inspired words of the poet Fernando Pessoa: "All is worthwhile if the soul is not small".

Aveiro, 2010

Tito Trindade Ana Luísa Daniel da Silva